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ABSTRACT: 

The Ant Colony Optimization Algorithm is a metaheuristic that from its first version, produced good results in solving the traveling 

salesman problem. Since, this algorithm has been successfully applied to several other problems.  However, its major drawbacks 

such as stagnation in a local optimum and its slowness for large data sizes, have led to the development of new versions such as 

modified versions, hybrid versions as well as parallel versions. In this paper, we propose a new parallel ant colony algorithm named 

MAC-UCP/MMAS (Multy Ant Colony for Unit commitment Problem based on MAX-MIN Ant System) in order to solve the unit 

commitment problem in a thermal power generation system. For this we develop a task parallelism using several ant colonies. The 

implementation of the algorithm on the multiprocessor system was done in a MIMD architecture through the SPMD computational 

model using explicit message passing for communication between processors. The algorithm is implemented in MATLAB software 

environment for two thermal unit systems, 4 and 10 generating units taken respectively over 8 and 24 hours. Thus, an increase of 

numbers of colonies from 1 to 6 is done to observe the behaviour of our MAC-UCP/MMAS algorithm.  Results obtained shows 

improved solution compared to sequential MMAS, Modified Ant Colony Optimization (MACO), particle Swarm Optimization 

combined with Lagrange Relaxation (PSO-LR), Swarm and Evolutionary Computation (SEC), Particle Swarm Optimization 

combined with Genetic Algorithm (PSO-GA), Binary Grey Wolf Optimizer (BGWO). Compared to some other methods, the results 

show for the case of 6 colonies, a maximum coefficient of variation (change) of the total production cost of 0.168 % for the system 

of 10 units, and 2.37561 % for the system of 4 units. Likewise, for 6 colonies, a maximum acceleration of 2.4154 is obtained for the 

system of 10 units, and 2.6489 for the system of 4 units. 

Keywords: Parallel ant colony algorithm, Multy Ant Colony, Unit commitment, Task parallelism, MIMD, SPMD 

 

RÉSUMÉ :  

L’Optimisation par l’algorithme de la colonie des fourmis est une métaheuristique qui dès sa première version a fait ses preuves en 

produisant des bons résultats dans la résolution du problème du voyageur de commerce. Depuis lors, cet algorithme a été appliqué 

avec succès à plusieurs autres problèmes. Cependant ses défauts majeurs tels que la stagnation dans un optimum local et sa lenteur 

pour des grande tailles de données, ont conduit au développement de nouvelles versions telles que les versions modifiées, les versions 

hybrides ainsi que les versions parallèles. Dans cet article, nous proposons un nouvel algorithme parallèle de la colonie des fourmis 

nommé MAC-UCP/MMAS (Multy Ant Colony for Unit commitment Problem based on MAX-MIN Ant System) pour la résolution 

du problème d’engagement des unités dans un système d’unités thermiques. Pour cela nous développons un parallélisme de tâches 

utilisant quelques colonies de fourmis. L’implémentation de l’algorithme sur un système multiprocesseur s’est faite dans une 

architecture MIMD à travers le modèle de calcul SPMD utilisant entre processeurs une communication explicite par passage de 

message. L'algorithme est implémenté dans l'environnement logiciel MATLAB pour deux systèmes d'unités thermiques, 4 et 10 

unités de production prises respectivement sur 8 et 24 heures. Ainsi, le comportement de l’algorithme proposé est observé en faisant 

varier le nombre de colonies de 1 à 6. Les résultats obtenus montrent une amélioration de la solution lorsque l’algorithme est comparé 

à quelques algorithmes existant tels que MMAS séquentielle, MACO, PSO-LR, SEC, PSO-GA, BGWO. Comparé aux autres 

méthodes, les résultats ressortent pour le cas de 6 colonies, un coefficient de variation maximal du coût total de production de 0,168 

% pour le système de 10 unités, et 2.37561 % pour le système de 4 unités. De même, pour 6 colonies, une accélération maximale de 

2.4154 est obtenue pour le système de 10 unités, et 2.6489 pour le système de 4 unités. 

Mots clés : Algorithme parallèle de la colonie des fourmis, Multy Ant Colony, Unit commitment, Parallélisme de 

tâches, MIMD, SPMD 
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1. INTRODUCTION 

The unit commitment problem is a combinatorial optimization problem that consists of planning the switching schedule of a set of 

production units. Moreover, it allows to determine over a precise planning period the power that these units should produce in order 

to meet energy demand while respecting the economic or environmental constraints imposed. It is therefore a problem which involves 

both binary variables and continuous variables and for which several solutions are proposed in the literature. Unit commitment 

problem was considered for the first time by Lowery in 1966 through dynamic programming in order to overcome the major difficulty 

of enumerative methods. Indeed, the principle behind these methods is to test all possible combinations of supply with the units 

considered, which may require significant resources for a large number of units.   

 Nevertheless, many authors had proposed various methods to solve unit commitment, neural network (Jahromi et al., 2013), fuzzy 

logic (Zhang et al., 2015), improved simulated annealing particle swarm optimization (Zhai et al., 2020), particle swarm optimization 

(Khatibi et Bigdeli, 2014), artificial bee colony algorithm (Sharma et al., 2015), Binary whale optimization algorithm (Kumar et 

Kumar, 2020),binary-coded genetic algorithm with a particle  swarm optimization (Postolov et Iliev, 2020), and ant colony algorithm 

(Zand et al., 2016).  

Ant colony optimization algorithm it is a metaheuristic method which was introduced in 1991. It is inspired by the behaviour of ant 

when searching their food. This algorithm is focused on artificial ants, building their solutions in a given optimization problem and 

exchanging the quality of their solutions by a mechanism inspired from the behavior of real ants (Dorigo et al., 1991). Ant Colony 

algorithms is widely used for their great flexibility due to their distributed and adaptive nature which gives them average performance 

in the static case, but seem more suited to dynamic problems (Bonabeau et al., 1999). Their major drawback of its slowness of 

convergence, in particular when solving large scale problems. This can lead either to the best solution being obtained beyond the 

desired timeframe, or to an unsatisfactory solution being obtained within the desired timeframe. Depending on the applications and 

therefore the requirements, the authors' interest may relate either to the quality of the solution to the detriment of time (Bonabeau et 

al., 1999) or to the gain in time to the detriment of the quality of the solution (Twoney et al., 2010), or even both solution and time.  

In order to improve the performance of the ACO algorithms, several techniques are used in literature, among which the modification 

of the existing algorithms (Ameli et al., 2011; Zand et al., 2016),  the hybridization of algorithms and the parallelization (Soh et al., 

2020;Yu et al., 2010; Dorigo, 1992). Parallelization is one of the most efficient techniques and several parallel ACO algorithms have 

been deployed (Soh et al., 2020) since the first suggestion of parallelization made by Dorigo (Dorigo, 1992). In 2011, Pedemonte et 

al. suggested a taxonomy of five kinds of parallelizations of ACO, the master-slave model, the cellular model, the parallel 

independent runs model, the multicolony model and the hybrid model. In the master-slave parallelization, a « master » process lead 

the interaction of globals informations (pheromone matrix, solutions, etc...) between « slaves » and these ones execute their tasks 

(definition of search space) as received from the « master ».  Besides, in the cellular model, only one colony is splitted into small 

quarters with their respective pheromone matrix (Pedemonte et al., 2011). In the case of parallel independent runs model, a given 

number of sequential algorithm having or not the same parameters is executed independently in many process. The multicolony 

model allows several colonies to explore simultaneously the search space and exchange informations in a given frequency in order 

to find the optimal solution. The hybrid models combined at least two out of the four previous models. 

Several authors have applied these techniques for various problems. Out of 65 proposals listed by Pedemonte et al. (2011) on the 

parallel implementation of the ant colony algorithm between 1998 and 2010, we have noticed that none addressed has been the issue 

of unit commitment. And even today, this issue is not commonly addressed with parallelization in the literature. Some authors have 

been interested in the parallelization of algorithms to solve the unit commitment problem (UCP) (Dupin et Talbi, 2020; Kargarian et 

al., 2018; Cong et al., 2015), but none were interested to the case of Ant Colony Optimization which should however attract our 

attention for reasons of slowness mentioned above. This is the case for systems with a high number of production units, with several 

constraints to be observed for sometimes very short horizons imposed by strong load dynamics. 

In order to improve the quality of the solution obtained with the classic ACO algorithms for the UCP not only in terms of computation 

time but also in terms of costs, this paper propose a new parallel Ant Colony algorithm for solving the thermal unit commitment 
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problem.  For that, the economic dispatch problem is solved by quadratic programming and the on/off schedule for the units over 

the planning period is solved by using multicolony approach of MMAS in unidirectional ring connection topology. The work is 

organized as follow: Section 2 is a short review on the unit commitment and the Max-min ant system algorithm. Section 3 present 

the materials and methods used, it is in this section that we present the proposed MAC-UCP/MMAS (Multy Ant Colony for Unit 

commitment Problem based on MAX-MIN Ant System) algorithm. Then section 4 is devoted to the presentation of the results and 

finally the conclusion is made in the section 5. 

 

2.  THE UNIT COMMITMENT AND MAX-MIN ANT SYSTEM ALGORITHM 

2.1. Unit commitment 

Unit commitment problem is an optimization problem whose aim is to minimize the production cost by committing available units 

within their constraints taken over a period (Kumar et Kumar, 2020; Dupin et Talbi, 2020; Habachi et al., 2019). The total production 

cost is the sum of the production cost, the startup cost and shut down cost of all the committed units. Thus, the formulation of UCP 

involves the objective function and various constraints. In this study, we consider a mono-objective formulation approach by 

considering the production cost as the only optimization criterion. 

2.1.1. Objective function 

The objective function is expressed as (Panwar et al., 2018; Zhao et al., 2018; Lai et al., 2012; Simon et al., 2006): 

𝑚𝑖𝑛 ( ∑ ∑ 𝐹𝑖(𝑃𝑖(𝑡))𝑈𝑖(𝑡) + 𝑆𝑇𝑖(𝑡)𝑈𝑖(𝑡) + 𝑆𝐷𝑖(1 − 𝑈𝑖(𝑡))𝑈𝑖(𝑡 − 1))
𝑇
𝑡=1

𝑁
𝑖=1                        (1) 

 

Where     𝐹𝑖(𝑃𝑖(𝑡)) = 𝑎𝑖 + 𝑏𝑖 . 𝑃𝑖(𝑡) + 𝑐𝑖 . 𝑃𝑖(𝑡)
2                                                              (2) 

 

𝑆𝑇𝑖(𝑡) = {
𝐻𝑆𝐶𝑖  , 𝑠𝑖 𝑇𝑚𝑖𝑛,𝑖

𝑜𝑓𝑓
≤ 𝑇𝑖

𝑜𝑓𝑓
≤ 𝑇𝑚𝑖𝑛,𝑖

𝑜𝑓𝑓
+ 𝑆𝐶𝑖

𝐶𝑆𝐶𝑖  , 𝑠𝑖 𝑇𝑖
𝑜𝑓𝑓

> 𝑇𝑚𝑖𝑛,𝑖
𝑜𝑓𝑓

+ 𝑆𝐶𝑖                        
                                                                       (3) 

𝑖 is the unit identification number ; 𝑁 is the total number of units; 𝑇 denotes the period of scheduling ; 𝐹𝑖(𝑃𝑖(𝑡)) is the fuel cost of 

the unit 𝑖 at the time 𝑡  when the unit generates  a power 𝑃𝑖(𝑡); 𝑈𝑖(𝑡) represent the  status of unit 𝑖 at the time 𝑡; 𝑆𝑇𝑖(𝑡) 𝑎𝑛𝑑 𝑆𝐷𝑖(1 −

𝑈𝑖(𝑡)) are respectively the startup and shut down cost of unit  𝑖  at the time 𝑡; 𝑎𝑖 , 𝑏𝑖  and 𝑐𝑖  are fuel costs coefficient of unit 𝑖.   

𝑇𝑚𝑖𝑛,𝑖
𝑜𝑓𝑓

  is the minimum down time of unit  𝑖; 𝑆𝐶𝑖 is  the number of cold-start hours of unit  𝑖;  

𝐻𝑆𝐶𝑖   and 𝐶𝑆𝐶𝑖 are respectively the hot startup cost and cold startup cost of unit 𝑖. 

2.1.2. Constraints 

In order for the power system modeling to be much more realistic and reliable, some constraints must be taken into account in unit 

commitment problem (Zhai et al., 2020).We present here the four constraints which accompany the minimization of the objective 

function. More specifically, we present the load demand constraints, constraints related to spinning reserve, constraints relating to 

the production limits of each unit and constraints relating to minimun up and down time of each unit. 
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2.1.3. Load demand constraints and spinning reserve 

In an electrical energy supply system, production must constantly balance demand. Any sudden drops in production can be seen 

while supplying the load. This can happen by prediction deviation in a real-time supply or even during a failure of one 

or more production units in operation (Li et al., 2013). Besides, a way to minimize such effects and to balance the losses 

quickly is to provid spinning reserve for the demand load at that time. This can be achieved by taking into account the 

spinning reserve 𝑅𝑡 in the balance inequality of load demand constraints. 

∑ 𝑈𝑖(𝑡)𝑝𝑖(𝑡)
𝑁
𝑖=1 ≥ 𝑅𝑡 + 𝐷𝑡 , 𝑡 ∈ {1,…… , 𝑇}                                           (4) 

𝐷𝑡   represents   the load demand  at the time 𝑡 

2.1.4. Constraints relating to the production limits of each unit. 

Due to the characteristics of each generating unit 𝑖 the generated power is bounded by two limits, the lower limit denoted  

𝑃𝑚𝑖𝑛𝑖 and the upper limit 𝑃𝑚𝑎𝑥𝑖. Thus we have: 

𝑃𝑚𝑖𝑛𝑖 ≤ 𝑝𝑖(𝑡) ≤ 𝑃𝑚𝑎𝑥𝑖. 𝑈𝑖(𝑡), 𝑡 ∈ {1,…… , 𝑇}                                   (5) 

2.1.5. Constraints relating to minimum up and down time of each unit  

The minimum start-up time is the time after which a unit can be stopped after it has been started. Likewise, the minimum shutdown 

time is the time after which a unit can reliably be considered shutdown and stable for a possible restart. These conditions are achieved 

by: 

   𝑇𝑖
𝑜𝑛 ≥ 𝑇𝑖

𝑢𝑝
 et  𝑇𝑖

𝑜𝑓𝑓
≥ 𝑇𝑖

𝑑𝑜𝑤𝑛                                                                          (6) 

where 𝑇𝑖
𝑢𝑝

 and 𝑇𝑖
𝑑𝑜𝑤𝑛  are respectively the minimum up time and the minimum down time of unit 𝑖. 

 

2.2. Max-Min Ant System algorithm (MMAS) 

Created in 1991, the first and original version of ACO called Ant system (AS) was  applied for the first time to traveller salesman 

problem (Dorigo et al., 1996; Dorigo et al., 1991). Morever the results obtained from this version was not competitive compared to 

other algorithms. As matter of fact, several improved versions came out. Out of them, we have  ACS (Ant Colony System)version 

(Dorigo et al., 1997) , MMAS (MAX-MIN Ant System) version (Stützle et Hoos, 1996) and others.  In fact, AS follows proportional 

random transition rule (Dupin et Talbi, 2020); the pheromone are deposit and evaporated in each path proportionally to the length of 

the path. Ant colony System (ACS) version use a pseudo-random transition rule and the pheromones are deposited and evaporated 

only on best solution (Pedemonte et al., 2011). MAX-MIN Ant System (MMAS) is an improved version developed by Thomas 

Stützle in 1997 and apply to some others few optimization problems (Stützle et Hoos, 2000, 1998). In this paper, MMAS is used as 

our basic sequential algorithm principally because it has the capacity of avoiding stagnation while others ACO versions fail to it. 

Furthermore other explanations come that the pheromone is bounded between a minimal value 𝜏𝑚𝑖𝑛 and a maximal value 𝜏𝑚𝑎𝑥. 

Another motivation is that in MMAS only best ants are allowed to update the pheromone in their path, thus this yields a best 

exploitation of solutions found in each iteration of algorithm. 

Let us recall here the transition rule and the pheromone update rule of   MMAS. 
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2.2.1. MMAS state transition rule  

In the MMAS algorithm, ants build a solution in a probabilistic way step by step by using information related to 

pheromone and specifics heuristics information’s of the given problem. Thus, the probability for an ant k to moves from 

discrete state i to j, is given by equation (7). 

𝑃𝑖,𝑗
𝑚 =

𝜏𝑖,𝑗
𝛼 .𝜂𝑖,𝑗

𝛽

∑ 𝜏𝑖,𝑚
𝛼 .𝜂𝑖,𝑚

𝛽𝑐
𝑚=1

                                                                           (7) 

With 𝛼, 𝛽  represents respectively the relative importance of intensity and visibility 

.𝜂𝑖,𝑗 is visibility of the solution; 

τ𝑖𝑗   is pheromone intensity of the path; 

𝑐 is the number of ants 

2.2.2. MMAS pheromone updating rule 

The pheromone update is done after each iteration.  The update rule in each path is given by equation (8). 

{

𝜏𝑖,𝑗 ← (1 − 𝜌). 𝜏𝑖,𝑗 + ∆𝜏𝑖,𝑗
𝑏𝑒𝑠𝑡    if  𝜏𝑚𝑖𝑛 < 𝜏𝑖,𝑗 < 𝜏𝑚𝑎𝑥

𝜏𝑖,𝑗 ← 𝜏𝑚𝑎𝑥   if  𝜏𝑖,𝑗 > 𝜏𝑚𝑎𝑥

𝜏𝑖,𝑗 ← 𝜏𝑚𝑖𝑛   if   𝜏𝑖,𝑗 < 𝜏
𝑚𝑖𝑛

                                       (8) 

∆𝜏𝑖,𝑗
𝑏𝑒𝑠𝑡 is defined by : 

∆𝜏𝑖,𝑗
𝑏𝑒𝑠𝑡 =

{
 
 

 
 

1

𝐿𝑏𝑒𝑠𝑡 
 if the path (𝑖, 𝑗) is the best 

amongst the solution 
                                               

0    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.                             

                                                                    (9) 

𝐿𝑏𝑒𝑠𝑡 : best solution cost 

 

3. MATERIALS AND METHODS 

In this section, we present the materials and methods which allowed us to achieve the objectives of this work. Programming and 

simulation have been done in Matlab software environment version 9.2.0.538062 (R2017a) on a computer Intel Xeon 12 CPUS, 2.60 

GHz, and 32 Go of RAM. The operating system installed is Windows 10 professional 64 bits (10.0, version 19041). The 

implementation of the algorithm on the multiprocessor system was done in a MIMD (Multiple Instruction, Multiple Data) architecture 

through the SPMD (Single Program-Multiple Data) computational model using explicit message passing for communication between 

processors. Two different systems of data were chosen to solve unit commitment problem because they appear commonly in the 

literature to valid the result of such this kind problem. We have test system 1 composed by 4 units on 8 hours (Khanmohammadi et 

al., 2010) and test system 2 composed by 10 units on 24 hours (Simon et al., 2006). 

The choice made makes it possible to sufficiently test the algorithm. The parameters of the algorithm are as follow:  for the 4 units 

system’s test 1, m = 230, α = 0.8445, β = 10.5, ρ = 0.61, Q = 0.9. Then for the 10 units system test 2 simulations parameters yield: 

m = 230, α = 0.8445, β = 10.5, ρ = 0.61, Q = 0.9. Moreover, the total number of algorithm’s iteration is 400 for the first system and 

700 for the second system. The maximal number of colonies is 6 and they exchange informations every 40 iterations of the algorithm. 
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The proposed algorithm deals with the parallelization. Through the multicolony execution, we implement a task parallelism of which 

it is necessary to specify the basic essential algorithms. The presentation will be done in two phases. The first step is to present 

MMAS applied to thermal unit commitment problem and the second step consist to develop our parallel multicolony algorithm based 

MMAS. 

To evaluate the parallel performance of the algorithm, the speed-up or acceleration ratio 𝑆(𝑝)  and parallel efficiency 𝐸(𝑝) were 

respectively evaluated using formulas (10) and (11). 

 

𝑆(𝑝) =
𝑇(1)

𝑇(𝑝)
                                                                            (10) 

𝐸(𝑝) =
𝑆(𝑝)

𝑝
                                                                            (11) 

 

𝑇(1) is the mean execution time of the sequential algorithm; 

𝑇(𝑝) is the mean execution time of the parallel algorithm with 𝑝 colonies; 

 

3.1  MAX-MIN Ant System for UCP 

The algorithm can be divided in 5 steps: the definition of search space, economic dispatching of power by using 

quadratic programming algorithm, initialization, exploration of search space and pheromones update. 

3.1.1. Search space definition 

Firstly, all possible combinations of UCP are found in the form of binary variables by using exhaustive enumeration. Thus, for a 

system of 4 units we will have 16 combinations and for a system of 10 units, 1024 combinations. Furthermore, for each period all 

states that their power cannot satisfy load and spinning reserve are eliminated; as matter of fact, the reminding state are used to build 

our ant search space as shown in Figure 1.  

 

 

Figure 1.  Ants Search space 
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3.1.2. Economic load dispatch  

Once the search space is established, quadratic programming is used to realize Economic Dispatching (ELD) for each state in each 

period of scheduling. This is done by taking into account the characteristics of each unit, the load demand and the spinning reserve. 

After the realization of ELD, for each state at any time on the previous search space of Figure 1, an optimal combination of 

actives/inactives of units is associated. 

3.1.3. Initialisation 

Appropriate parameters for the algorithm are well defined in initialization step. Out of them, we have: the number of ants (m), the 

relative importance of pheromone (α), the relative importance of visibility (β), the evaporation coefficient (ρ), as well as the initial, 

maximum and minimum quantities of pheromones on each trail respectively τ0, τmax and τmin   . Considering that the initial quantity 

of pheromone is set at τmax, the quantity of deposit pheromone are given by the following relationships (Lai et al., 2012; Stützle et 

Hoos, 2000, 1998): 

𝜏0 = 𝜏𝑚𝑎𝑥 =
1

∑ 𝑚𝑖𝑛𝐹𝑡(𝐷𝑡)
𝑇
𝑡=1

                                                                               (12) 

𝜏𝑚𝑖𝑛 =
𝜏max (1− √𝑃𝑏𝑒𝑠𝑡

𝑛 )

(avg−1) √𝑃𝑏𝑒𝑠𝑡
𝑛                                       (13) 

𝐹𝑡(𝐷𝑡) is the cost solution vector associated with a Demand power 𝐷𝑡  at time 𝑡; 

∑ 𝑚𝑖𝑛𝐹𝑡(𝐷𝑡)
𝑇
𝑡=1  is the sum of points with the smallest generating cost in each period; 

𝑎𝑣𝑔 is the average number of solutions from which each ant chooses; 

Where 𝑃𝑏𝑒𝑠𝑡  is the probability of finding the optimal solution when the MMAS algorithm converges, which is generally 0.05 (Pan et 

al., 2020). 

3.1.4. Exploration of search space  

In this step, each ant explore the search space looking for the best solution as possible. Every ant starts with a minimal cost in the 

first hour till the last hour; the transition rule is given by equation (7). 

In each transition, constraints related to minimum up time and minimum down time are set.  If these constraints are fufilled, then 

startup cost are calculated, if they are not fufilled startup cost are sent to infinity. 

At the last hour, the total production cost of the solution found is calculated and saved. The total production cost takes into account 

the fuel costs and the startup costs. We repeat the procedure to all the ants and after comparison we save the best ants solution. 

3.1.5. Pheromones update rule  

This operation consists of reinforcing the pheromone tracks associated with promising solutions and, on the contrary, degrading by 

“evaporation” that associated with bad solutions. The pheromone update rule is given by equation (8). 

3.1.6. MMAS algorithm for solving  UCP  

The flowchart of the proposed algorithm is shown in Figure 2 and summarizes all these steps. 
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Figure. 2.  MMAS algorithm applied to solve UCP 

 

3.2 Multi Ant Colony parallel algorithm for UCP based MMAS 

To parallelize the MAX-MIN Ant System for UCP we adopt the multicolony parallelization model.  

The main interest of this method lies in the communication between the different colonies. To this, many studies have 

been carried on the communication strategies between colonies (Sriyanyong et Song, 2005). Those strategies are focused 

on elements such as the nature of exchange information, the exchange frequency or the communication strategy. Even if 

this communication mechanism requires expensive buffer copying and increases synchronization costs, it is easy to 

understand with their send/receive primitives (Kandemir et al., 2000). The main motivation for choosing this mechanism 

is linked to the sharing of solutions between colonies. 

 To present our new algorithm, we divided it into 3 steps such as the search space generation, the exploration of search 

space and the exchange of information. 

3.2.1. Search space generation 

In this step, the search space of ants for the scheduling presented in Figure 1 is generated. It is composed of all 

combinations of generators able to satisfy load demand and spinning reserve by taking into account the various 

constraints. Then for each state of the search space, the Economic Dispatching problem is solved by using quadratic 
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programming throughout the minimal production cost of each state is obtained. In fact, we suppose in the study that the 

search space generated is the same for all the colonies. 

3.2.2. Exploration of search space  

Once the search space is defined, ants are groups in colony and each coloniy are assigned to p available process. All the 

colonies have the same characteristics (α ,β, γ, ρ) and use the same basic version of  MMAS algorithm. Thus, the 

exploration phase yields the same procedure for all the colonies. 

3.2.3. Informations Exchange 

In this step, each colony exchange with his neighbour the information of the best ant (the ant that have found the optimal 

cost). This step takes place after a predefined number of iterations of the algorithm. For our algorithm, we have adopted 

between the p available colonies a one-way ring communication shown in Figure. 3. Thus for all the 𝐼 itérations, each 

colony 𝐶(𝑘)𝑚𝑜𝑑𝑝send to 𝐶(𝑘+1)𝑚𝑜𝑑𝑝the informations of the ant that has found the less production cost and receive the 

one of the colony 𝐶(𝑘−1)𝑚𝑜𝑑𝑝.If the received solution is better than the one that the colony had, then that former solution 

is replaced by the received ones which will be used in the update pheromone stage in the next iteration. 

 

 

Figure 3.  Inter-colony information exchange for N colonies 

 

3.3 MAC-UCP/MMAS algorithm for UCP 

The flowchart in Figure 4 summarizes our MAC-UCP/MMAS algorithm. Figure 5. is an overview of the parallel based on multiple ant-

colonies in which workers are processors. It should be noted here that we can distinguish two major phases of execution of our MAC-

UCP/MMAS algorithm for the unit commitment problem: the sequential execution phase which groups the steps which go from 1 to 

4, and the parallel execution phase for steps 5 to 7. 
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Figure 4. MAC-UCP/MMAS algorithm 

 

Figure 5. Schematic overview of the parallel based on multiple ant-colonies. 

Begin

Search for states satisfying the constraints of demand and reserve

Solve the economic dispatch problem

Generate ants' search space

Initialize the heuristic parameters α,β,ρ ,τ 

EXECUTION 
COLONY 1

Reset I

Send the best 
solution to 
Colony 2

Receipt of the 
best solution 

from the colony p

Solution received 
better?

Current best solution = 
solution received

yes

Stop criterion?

End

no

no

no   NOMBER I OF 
ITERATION ? 

yes

EXECUTION 
COLONY p

Reset I

Send the best 
solution to 
Colony 1

Receipt of the best 
solution from the 

colony p-1

Solution received 
better?

Current best solution = 
solution received

yes

Stop criterion?

yes

no

no

no   NOMBER I OF 
ITERATION ? 

yes

yes

EXECUTION 
COLONY 2

Reset I

Send the best 
solution to 
Colony 3

Receipt of the 
best solution 

from the colony 1

Solution received 
better?

Current best solution = 
solution received

yes

Stop criterion?

no

no

no   NOMBER I OF 
ITERATION ? 

yes

yes

Initialize the all parameters of power units

 



Conférence Internationale LOREXP-2021 : « Chaines de Valeurs et Transformations Intégrales des Ressources Locales », Ngaoundéré, Cameroun, 20 au 23 Avril 2021. 

LOREXP-2021 International Conference: “Value Chains and Integral Transformation of Local Resources”, April 20 to 23, 2021, Ngaoundere, Cameroon. 

 

4. RESULTS AND DISCUSSIONS 

In this section, we present the results that come out of our various simulations of proposed parallel MAC-UCP/MMAS algorithm.  

Tables 1 and 2 show the results of the units switching on/off programs , the powers generated by each generator over the planning 

period as well as the cumulative costs, respectively for the systems of 4 units and 10 units. We can extract from these tables the 

best total cost obtained on test system 1 for the 8 hours of the planning horizon, namely $ 73,444.69. For test system 2 the total 

cost of production including the running cost of the generators and their start-up costs over the 24 hours period is $ 83351.372. 

In Tables 3 and 4 we present the results obtained when we vary the number of colonies respectively for the systems of 4 and 10 

units. For each number of colonies, 10 consecutive runs of the algorithm were performed. It is therefore clear that increasing the 

number of colonies significantly reduces the total cost of production, as well as the range of variation of the result. 

In order to better highlight this, we also plotted the cost difference between the MAC-MMAS version and the sequential MMAS 

version as the number of colonies increases. As can be seen in Figure 6 for both systems, it appears that the cost savings compared 

to the sequential version of the algorithm increases with the number of colonies used. 

Table 1.  UCP Results with MAC-UCP/MMAS for 4-units system 

Hour 
Demand 

(MW) 

Status of 

Units 

Power generated for each unit 

(MW) 

 

Power generations  of Units 

(MW) 

 

Total Power 

Generated 

(MW) 

Fuel 

Cost ($) 

Transition 

Cost ($) 

Total 

cumulative 

Cost ($) 
1 2 3 4 1 2 3 4 

1 450 1 1 0 0 300 150 0 0 450 9109.360 0 9109.360 

2 530 1 1  0 0 300 230 0 0 530 10593.040 0 19702.400 

3 600 1  1 0 1 300 250 0 50 600 12412.860 0.02 32115.280 

4 540 1 1  0 0 300 240 0 0 540 10782.280 0 42897.560 

5 400 1 1  0 0 276.1905 123.809 0 0 400 8205.360 0 51103.349 

6 280 1 1  0 0 196.1905 83.8095 0 0 280 5525.780 0 57170.50 

7 290 1 1  0 0 202.8571 87.149 0 0 290 5706.050 0 63414.33 

8 500 1 1  0 0 300 200 0 0 500 10030.360 0 73444.69 

 

Table 2. Results provided by MAC-UCP/MMAS for 10-Units system 

 

 

 

 

HOUR 
DEMAND 

(MW) 

UNITS CUMULATIVE 

TOTAL COSTS ($) 1 2 3 4 5 6 7 8 9 10 

1 1170 1 1 1 1 1 1 1 1 0 1 2717.524 

2 1250 1 1 1 1 1 1 1 1 0 1 5323.400 

3 1380 1 1 1 1 1 1 1 1 1 1 8304.781 

4 1570 1 1 1 1 1 1 1 1 1 1 11600.605 

5 1690 1 1 1 1 1 1 1 1 1 1 15179.271 

6 1820 1 1 1 1 1 1 1 1 1 1 19085.683 

7 1910 1 1 1 1 1 1 1 1 1 1 23232.089 

8 1940 1 1 1 1 1 1 1 1 1 1 27461.806 

9 1990 1 1 1 1 1 1 1 1 1 1 31839.993 

10 1990 1 1 1 1 1 1 1 1 1 1 36218.180 

11 1970 1 1 1 1 1 1 1 1 1 1 40535.245 

12 1940 1 1 1 1 1 1 1 1 1 1 44764.962 

13 1910 1 1 1 1 1 1 1 1 1 1 48911.368 

14 1830 1 1 1 1 1 1 1 1 1 1 52843.915 

15 1870 1 1 1 1 1 1 1 1 1 1 56882.319 

16 1830 1 1 1 1 1 1 1 1 1 1 60814.866 

17 1690 1 1 1 1  1 1 1 1 11 64393.532 

18 1510 1 1 1 1 1 1 1 1 1 1 67554.400 

19 1420 1 1 1 1 1 1 1 1 1 1 70519.636 

20 1310 1 1 0 1 1 1 1 1 1 1 73271.306 

21 1620 1 1 0 1 1 1 1 1 1 1 75885.569 

22 1210 1 1 0 1 1 1 1 1 1 1 78394.308 

23 1250 1 1 0 1 1 1 1 1 1 1 80987.321 

24 1140 1 1 0 1 1 1 1 1 1 1 83351.372 
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Table 3.  Impact of the number of colonies on the solution (4-units system) 

Number of colonies Best cost ($) Worst cost ($) Mean($) Variation (%) Gap with one colony version (%) 

1(sequential MMAS) 73513.8700 74232.3582 73839.1315 0.9730 0 

2 73444.6857 74105.3582 73821.5701 0.8949 0.0238 

3 73444.6857 73797.6571 73645.0543 0.4793 0.2635 

4 73444.6857 73534.4575 73501.0713 0.1221 0.4600 

5 73444.6857 73513.8734 73492.7821 0.0941 0.4713 

6 73444.6857 73444.6857 73444.6857 0 0.5371 

 

Table 4.  Impact of the number of colonies on the solution (10-units system) 

Number of colonies Best cost ($) Worst cost  ($) Mean  ($) Variation (%) Gap with one colony version (%) 

1 83371.2087 83495.9491 83425.4416 0.1495 0 

2 83351.3723 83373.215 83368.9351 0.0262 0,0678 

3 83351.3723 83369.439 83363.1257 0.0217 0.0747 

4 83351.3723 83366.0031 83357.5375 0.0175 0.0815 

5 83351.3723 83351.3723 83351.3723 0 0.0889 

6 83351.3723 83351.3723 83351.3723 0 0.0889 

 

 

Figure 6. Cost variations and gaps for 4 and 10 units systems using MAC-UCP/MMAS and sequential MMAS  

 

Figure 7 shows for the system of 10 units and 4 units, the different convergence curves of the algorithm as a function of the 

number of colonies. It is clear from this figure that the algorithm converges faster as the number of colonies increases. Figure 8 

makes it possible to highlight for certain selected period the exchange processes through synchronization in the change of certain 

cost values between colonies. With the areas circled on the diagram, we can observe the adoption of better solutions by some 

colonies.  

In Figure 9, we present the different convergence characteristics obtained when we vary the period of information exchange 

between colonies. We apply it to the 4-unit system and the results obtained attest that increasing the exchange frequency 

(reducing the exchange period) accelerates convergence while maintaining the quality of the solution.  Tables 5 and 6 show the 

mean execution times for the four-unit and ten-unit systems respectively. It also shows the speed-up and efficiency values of the 

parallel algorithm for each of the colony number values.  

In both cases we can observe a decrease in execution time as the number of colonies increases. Thus for the test system of 4 units 

we go from 4.535 s for the sequential version to 1.712 s for the parallel version with 6 colonies, i.e. a speed-up of 2.65 and 
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therefore an efficiency of 44.15 %. Likewise for the system of 10 units we go from 5.0612 s for the sequential version, to 2.0954 

s for the parallel version with 6 colonies, i.e. a speed-up of 2.41 and an efficiency of 40.26 %. 

 

 

(a) 4 units systems 

 

(b) 10 units systems 

Figure 7.  Convergence characteristics of MAC-UCP/MMAS as a function of the number of colonies, for the system 

of 4 units (a) and 10 units (b). 

 

                

Figure 8. Highlighting exchanges                      Figure 9. Convergence characteristics of MAC-UCP/MMAS 

on the 4-unit       ……………………………………   system  with different periods of information exchange 
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Table 5. Mean execution times of MAC-UCP/MMAS for 4-Units System 

Nomber of colonies 1 2 3 4 5 6 

Mean execution time (s) 4.53488 4.567 4.144 4.056 3.819 1.712 

Speed-up (p.u.) 1 0.9930 1.0943 1.1181 1.1874 2.6489 

Parallel efficiency (%) 100 49.65 36.48 27.95 23.75 44.15 

 

Table 6. Mean execution times of MAC-UCP/MMAS for 10-Units System  

Nomber of colonies 1 2 3 4 5 6 

Mean execution time (s) 5.0612 2.8375 2.4145 2.3723 2.2759 2.0954 

Speed-up (p.u.) 1 1.7837 2.0962 2.1335 2.2239 2.4154 

Parallel efficiency (%) 100 89.19 69.87 53.34 44.48 40.26 

 

Through Table 7 we establish a comparison between the cost obtained for our MAC-UCP/MMAS algorithm with the costs 

obtained in the literature by sequential versions proposed by other authors using the same system of 4 units. 

 The results allow us to assert that the proposed algorithm significantly improves the quality of the solution. 

Table 8 presents a comparison of the results of our parallel algorithm and other sequential algorithms found in the literature for 

the 10-unit system. 

 We also note that for this dataset, the algorithm shows better results than some existing sequential versions of ACO (Simon et 

al., 2006). 

Table 7. Comparison of total cost of production with other methods for 4-unit systems 

Method 

ILR 

(Kamboj 

et al., 

2016) 

LR-PSO 

(Kamboj et 

al., 2016) 

MACO 

(Ameli et al., 

2011) 

Hybrid HS 

and Random 

Search 

Algorithm 

(Kamboj et 

al., 2016) 

IBCS (Zhao et 

al., 2018) 

BGWO 

(Panwar et al., 

2018) 

 

MMAS 

Proposed 

MAC-MMAS 

TOTAL COST ( 

) 
75231.9 74808 74520.3 

74476.0 
74240.7 73933.1 73513.87 73444.6857 

Change (%) 2.37561 1.8224 1.4434 1,3848 1.0722 0.6606 0,09411 0 

 

Table 8.  Comparison of total cost of production with other methods for 10-unit systems 

Method PROPOSED 

MAC-MMAAS 

Proposed MMAS Dynamics 

programming 

(Simon et al., 

2006) 

BRANCH AND 

BOUND (Simon 

et al., 2006) 

Ant colony sytem 

(Simon et al., 

2006) 

TOTAL COST ($) 83351.3 83427.5 83652.4 83475.25 83491.42 

Change (%) 0 0.0913 0.3599 0.148 0.168 
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5. CONCLUSION AND PERSPECTIVES 

In this article, a new parallel algorithm of ant colony optimization for solving the thermal unit commitment problem was proposed 

and performed. This new approach is based on the Multicolony MMAS (MAX-MIN Ant System) algorithm with unidirectional 

circular exchange. The implementation on MATLAB was done through an SPMD (Single Program-Multiple Data) model with 

message passing communication. Several repetitive and consecutive tests of our algorithm were carried out on two datasets, 

namely a set of 4 thermal units and one of 10 thermal units. In both cases, the results obtained were compared with those existing 

in the literature. These comparisons show that the proposed algorithm significantly improves the quality of the solution in terms 

of cost while improving execution time. In particular, the sensitivity of this algorithm is highlighted through to the number of 

colonies and the frequency of exchange. With the increasing use of energy storage device, it is important to investigate on their 

impact on the UCP and therefore be able to develop robust UCP models. 
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